BIOPHYSICS AND BIOCHEMISTRY

Dextrorphan-Binding Proteins in the Hippocampus of Audiosensitized Rats Genetically Predisposed to Epilepsy

N. I. Natsvlishvili, K. D. Abutidze, and D. G. Mikeladze

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 124, No. 8, pp. 168-170, August, 1997 Original article submitted November 20, 1995

A fraction of dextrorphan-binding proteins is isolated from the hippocampus of normal and audiosensitized Krushinsky—Molodkina rats genetically predisposed to epilepsy. Pharmacological analysis of this fraction reveals the presence of haloperidol-sensitive phencyclidine- (N-[1-Phenylcyclohexyl]piperidine, PCP)-binding proteins with molecular weight 18-20 kD judging from the data of high-performance liquid chromatography.

Key Words: NMDA-glutamate receptor; σ -binding proteins; epilepsy

At present, molecular and cell mechanisms of epilepsy attract great attention [7]. It is hypothesized that NMDA-glutamate receptors, together with calcium and potassium redistribution systems, play an important role in the pathogenesis of epilepsy [10]. Of particular clinical importance is the fact that antagonists of NMDA-glutamate receptors exhibit a pronounced anticonvulsive and antiepileptic effects [8]. Dextromethorphan and its o-demethylated derivative dextrorphan (DP) are of particular value, since they have no side psychomimetic effects in therapeutic doses and are well tolerable [8].

Pharmacological studies showed that apart from NMDA-glutamate receptors, DP with high affinity binds to σ-opiate receptors [6]. It is hypothesized that ligand-binding centers of σ-opiate receptors are pharmacologically similar to binding sites for non-competitive inhibitors of NMDA-glutamate receptor [5]. Therefore, σ-receptor proteins are probably tightly coupled to NMDA-glutamate receptor and modulate its activity. In order to elucidate the mechanisms of

interaction between σ -binding proteins with NMDA-glutamate receptor and to study molecular targets for DP, we purified and compared protein composition in the hippocampus of normal rats and rats predisposed to audiogenic epilepsy.

MATERIALS AND METHODS

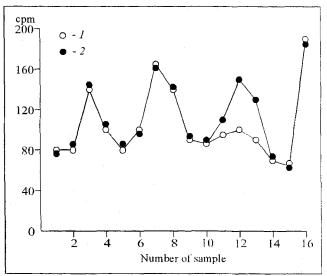
Experiments were carried out on male Wistar rats and rats of Krushinsky—Molodkina strain (KM) genetically predisposed to audiogenic epilepsy (body weight 200-250 g) [1].

Synaptic membranes were isolated from the hippocampus as described previously [2]. DP-binding proteins were solubilized with 1% sodium desoxycholate and centrifuged at 100,000g for 60 min. The supernatant was dialyzed against 20 mM Tris-HCl (pH 7.4) and applied to a DP-sepharose column (1×5 cm). Bound proteins were eluted with 10 μ M DP, dialyzed, concentrated, and used in further analysis. DP-sepharose was prepared as described elsewhere [4].

High-performance liquid chromatography (HPLC) was carried out in a Waters system using a Protein

Laboratory of Neurochemistry, I. S. Beritashvili Institute of Physiology, Academy of Sciences of Georgia, Tbilisi

Pak 300 SW column. Mobile phase contained 0.05 M phosphate buffer and 0.03% 3-[(3-Cholamidopropyl]dimethylammonio)-1-propanesulfonate (CHAPS), pH 6.8. The elution rate was 1 ml/min. Radioactivity (in 0.01-ml aliquot) and extinction (210 nm) of the eluate were determined.


Binding of radiolabeled ligands with proteins was measured in a medium containing 20 mM Tris-HCl, 2 mM EDTA, 5 µg/ml pepstatin, 5 U/ml aprotinin (pH 7.4), 30-50 µg/ml purified protein, and 5 nM $^3\text{H-SKP}$ 10047 (N-allylnormetazocine, 41.8 Ci/mmol, NEN) or $^3\text{H-PCP}$ (47.6 Ci/mmol, NEN). Nonspecific binding was measured in the presence of 10 µM DP or 10 µM haloperidol or 10 µM MK-801. Samples were incubated for 30 min at 25°C and filtered through Whatman GF/C filters or separated by HPLC.

RESULTS

The content of DP-binding proteins in the hippocampus of KM rats was higher than that in Wistar rats. After solubilization of the synaptic membrane proteins and purification on DP-sepharose, the preparations from KM rats contained more Lowry-positive material (by 1.3-1.5-fold) than those from Wistar rats (4.7 vs. 3.2 µg/g wet tissue). Moreover, the bulk of the DP-binding material isolated from the hippocampus of Wistar rats interacted predominantly with ³H-SKP 10047 and weakly bound ³H-PCP (Table 1). Haloperidol-sensitive sites in these proteins constituted 62-63%. ³H-SKP 10047-binding proteins were sensitive only to MK-801, they weakly reacted with DP and did not bind haloperidol.

Thus, pharmacological analysis of DP-binding proteins revealed the presence of both NMDA-glutamate receptors interacting with PCP and MK-801 and σ-opiate receptors sensitive to haloperidol. Therefore, it can be concluded that DP interacts with both receptor systems.

The contents of ³H-SKP 10047- and ³H-PCP-binding proteins were practically the same in audiosensitized and normal rats. In both rat strains, ³H-SKP 10047-binding proteins contained the same number of haloperidol-sensitive sites (62-63%). Unlike Wistar rats, the hippocampus of KM rats contained a higher number of PCP-binding sites with the same specificity for haloperidol and DP. The content of MK-801-binding proteins, and, consequently, the number of NMDA-glutamate receptors were similar in KM and Wistar rats (Table 1). Since PCP-binding proteins in KM rats are sensitive to both DP and haloperidol (σ-site), it can be concluded that NMDA-receptors in these rats possess an additional σ-specific regulatory site. This site presumably is not related to

Fig. 1. High-performance liquid chromatography (HPLC) of dextrorphan-binding proteins on Protein Pak 300 SW. Radioactivity of HPLC fraction of hippocampal proteins incubated in the presence of ³H-SKP 10047 from Wistar (1) and KM (2) rats.

the major NMDA-receptor molecule, since the number of MK-801-binding sites is the same in KM and Wistar rats.

For identification of the modulating sites, the DP-binding proteins were analyzed by HPLC. The HPLC spectrum of ³H-SKP 10047-binding proteins was similar in both animal strains (Fig. 1). There were three peaks corresponding to molecular weights of 120, 60, and 15-20 kD. The contents of the first two fractions were the same in both strains, while the content of the low-molecular-weight fraction (15-20 kD) in KM rats considerably surpassed that in Wistar rats. These data suggest that the low-molecular-weight fraction contains haloperidol-sensitive proteins, which modulate the activity of NMDA-glutamate receptor in audiosensitive KM rats.

TABLE 1. Binding of Different Radiolabeled Ligands to DP-Binding Proteins from the Hippocampus of Wistar and KM Rats Solubilized and Purified from the Synaptic Membranes $(M\pm m)$

Animal strain	Specific binding, pmol/mg proteins	
	³H-SKP 10047	³H-PCP
Wistar (n=5)		
DP-specific binding	9.25±1.8	0.25±0.05
Haloperidol-specific binding	5.90±0.9	
MK-801 specific binding	_	3.10±0.8
KM (n=7)		
DP-specific binding	7.65±1.2	1.55±0.29
Haloperidol-specific binding	4.65±0.7	1.75±0.3
MK-801 specific binding		3.12±0.85

Recent studies showed that DP is a promising anticonvulsant with a weak psychomimetic activity [10] It is hypothesized that similarly to other (+)benzomorphans, the therapeutic effect of this drug is mediated through so-called σ-opiate receptor, which is not sensitive to naloxone but can be blocked by the neuroleptic haloperidol [6]. However, apart from the haloperidol-sensitive σ-receptors, (+)-benzomorphans interact with NMDA-glutamate receptors and modulate the binding of phencyclidine and MK-801 [5]. In case of MK-801 it is unknown whether these agents directly interact with channel part of the receptor, of their effect is mediated through σ-opiate proteins. Our experiments demonstrated the presence of additional low-molecular-weight proteins in the hippocampus of KM rats, which directly interact with NMDA-glutamate receptor and modulate its activity. This interaction possibly underlies the neuroprotective and anticonvulsant effects of (+)-benzomorphans.

Molecular weight of true σ-opiate receptor and mechanisms of signal transduction coupled with this receptor remain unknown [6]. It has been shown that molecular weight of DP-binding proteins greatly varies in different types of nervous cells (from 18 to 65 kD). Moreover, previous investigation haloperidol and other σ-active agents inhibit glutamate- and

glycine-induced binding of ³H-TCP [1-(2-thienyl) cyclohexyl piperidine] [9], and D-serine-stimulated accumulation of cGMP [3]. This implies that σ-site-bearing proteins can be a constituent of active NMDA receptor. Our findings suggest possible involvement of low-molecular-weight proteins in the modulation of glutamate receptors. These proteins probably modulate the sensitivity of NMDA-glutamate receptor and thereby contribute to the formation of an epileptic focus.

REFERENCES

- 1. L. V. Krushinsky, *Biological Basis of Intellectual Activity* [in Russian], Moscow (1977).
- J. Ambar, Y. Kloog, and M. Sokolovski, J. Neurochem., 51, 133-140 (1988).
- 3. S. Borosky, J. Ferkany, M. Pontecorvo, et al., Soc. Neurosci. Abstr., 16, 356-357 (1990).
- H. Charbonneau and Y. Porath, Biochem. Biophys. Res. Commun., 90, 1039-1047 (1979).
- 5. C. Chavkin, Trends Pharmacol. Sci., 11, 213-215 (1990).
- C. Kaiser, M. J. Pontecorvo, and R. E. Mewshaw, Neurotransmission, 7, 1-5 (1991).
- 7. J. O. McNamara, J. Neurosci., 14, 3413-3425 (1994).
- 8. R. J. Porter and M. A. Rogawski, *Epilepsia*, 33, Suppl. 1, S1-S6 (1992).
- 9. T. S. Rao, J. A. Cler, M. R. Emmet, et al., Mol. Pharmacol., 37, 978-982 (1990).
- 10. M. A. Rogawski, Trends Pharmacol. Sci., 14, 325-331 (1993).